Chapter 3- parte B outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
u segment structure
= reliable data transfer
= flow control
® connection management
3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-1

TC P: OverVieW RFCs: 793,1122,1323, 2018, 2581

< point-to-point:
" one sender, one receiver
+ reliable, in-order byte
steam:

* no “message
boundaries”
+ pipelined:
» TCP congestion and

flow control set window
size

« full duplex data:

= bi-directional data flow
in same connection

= MSS: maximum segment
size
< connection-oriented:

= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-2

TCP sesment structure

32 bits

URG: urgent data
(generally not used)™_| source port # dest port #

sequence number
\I@owledgement number

PSH: push data now hleeid ;I\Qlal_ RIS|F| receive window
(generally not used) —| Urg data pointer

opti /(s (variable length)

application
Internet/ . data
checksum (variable length)
(asin UDP)

counting

by bytes

of data

(not segments!)

ACK: ACK #
valid

bytes
revr willing
to accept

RST, SYN, FIN:— |
connection estab
(setup, teardown

commands)

Transport Layer 3-3

TCP seq. numbers, ACKs

outgoing segment from sender

source port #

dest port #

sequence numbers:

sequence number

u byte stream number of acknowledgement number
first byte in segment’ s [[[wnd
checksum urg pointer
data :
window size

acknowledgements: —

eXPeCted fI"OI’Tl Other Slde sender sequence numberspace

= cumulative ACK \ \

. . sent sent, not- usabIe not
Q: how receiver handles ACKed yetACKed butnot usable
out-of-order segments glig;]'t,,) yet sent

» A: TCP spec doesn’ t say,
- up to implementor

incoming segment to sender
| source port # | dest port # |

sequence number
acknowledgement number \
A rwnd

| checksum | urg pointer |

Transport Layer 3-4

TCP seq. numbers, ACKs

Host A Host B
\
-~ ;
User s
types
c Seq=42, ACK=79, data = ‘C’
host ACKs
/ receipt of
‘C’, echoes
Seq=79, ACK=43, data = ‘C’ ‘c’
host ACKs a back C
receipt
of echoed ~—~—___

c Seq=43, ACK=BQ___

simple telnet scenario

Transport Layer 3-5

TCP round trip time, timeout

Q: how to set TCP
timeout value?
+ longer than RTT
= but RTT varies

« too short: premature
timeout, unnecessary
retransmissions

« too long: slow reaction
to segment loss

Q: how to estimate RTT?
> Sanpl eRTT: measured

time from segment
transmission until ACK
receipt

® ighore retransmissions

» Sanpl eRTT will vary, want

estimated RTT “smoother”

= average several recent
measurements, not just
current Sanpl eRTT

Transport Layer 3-6

TCP round trip time, timeout

Esti mat edRTT = (1- a)*EstimatedRTT + a*Sanpl eRTT

+ exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

350
RTT: gaia.cs.umass.edu to fantasia.eurecom.frh
1

—
192}
ke
c
]
O
@
R
5
=
E
& sampleRTT
150
EstimatedRTT
100
1 8 15 22 29 36 a3 50 57 64 71 78 85 92 99 106
time (seconds) Transport Layer 3-7

TCP round trip time, timeout

« timeout interval: Esti mat edRTT plus “safety margin”
= large variation in Est i mat edRTT - > larger safety margin

- estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-P)*DevRTT +
B*| Sanpl eRTT- Esti mat edRTT]|
(typically, B = 0.25)

Timeout I nterval = EstinmatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-8

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and = segment structure
demultiplexing = reliable data transfer

3.3 connectionless " flow control
transport: UDP = connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

Transport Layer 3-9

TCP reliable data transfer

% TCP creates rdt service
’ .
on top of IP" s unreliable
service

= pipelined segments . .
= cumulative acks let” s initially consider

= single retransmission simplified TCP sender:
timer * ignore duplicate acks

% retransmissions * ignore flow control,
triggered by: congestion control

" timeout events
®» duplicate acks

Transport Layer 3-10

TCP sender events:

data rcvd from app:

+ create segment with
seq #

seq # is byte-stream
number of first data
byte in segment
start timer if not
already running

= think of timer as for
oldest unacked
segment

= expiration interval:
Ti meQut I nt er val

g

3
4

g

o
o

timeout:

% retransmit segment
that caused timeout

< restart timer

ack revd:

+ if ack acknowledges

previously unacked
segments

= update what is known
to be ACKed

= start timer if there are
still unacked segments

Transport Layer 3-11

TCP: retransmission scenarios

Host A Host B
3 T

2 'f

T Seq=92, 8 bytes of data

5 _—

3 ACK=100

£ X

I~
Seq=92, 8 bytes of data

ACK=100

lost ACK scenario

Host A H
3

SendBase=92

0]
(=]
0]
4
oe]

‘ﬁ

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

\

ACK=100
ACK=120

—— timeout —

Seq=92, 8

SendBase=100 bytes of data

~
SendBase=120

ACK=120

\

SendBase=120

premature timeout

Transport Layer 3-12

TCP: retransmission scenarios

T
[e]
]
@
>
s
[o]
@
28
@

ba
s

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes%fd{
ACK=100

X< /

ACK=120

——— timeout ——*

A

Seq=120, 15 bytes of data

cumulative ACK

Transport Layer 3-13

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
* segment structure
= reliable data transfer
= flow control
* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-14

TCP flow control

receiver’ s buffer by transmitting
too much, too fast

N —
application ‘
application may process
remove data from +— -
licat
TCP socket buffers I'v | application
TCP socket 0s
receiver buffers
... Slower than TCP Fa
receiver is delivering ——
(sender is sending) ToP
code
|]
_ P
ﬂOW control code \
receiver controls sender, so T I j
’ 1
sender won’ t overflow ' R / g

1 |
ftom sender

receiver protocol stack

Transport Layer 3-15

TCP flow control

+ receiver “advertises” free
buffer space by including
r wnd value in TCP header
of receiver-to-sender
segments

= RcvBuf f er size set via
socket options (typical default
is 4096 bytes)

® many operating systems
autoadjust RcvBuf f er
% sender limits amount of
unacked (“in-flight”) data to
receiver s rwnd value

+ guarantees receive buffer
will not overflow

to application process

e

RcvBuf f er buffered data
rwnd free buffer space
TCP segment payloads
receiver-side buffering

Transport Layer 3-16

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
u segment structure
= reliable data transfer
= flow control
® connection management
3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-17

Connection Management

before exchanging data, sender/receiver “handshake”:
+ agree to establish connection (each knowing the other willing

to establish connection)

< agree on connection parameters

application

!

Lal_ln |
connection state: ESTAB
connection variables:

seq # client-to-server

server-to-client
rcvBuf f er size
at server,client

q network
-

Socket clientSocket =
newSocket (" host name", "port
nunber ") ;

application
11
Ll |
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuf f er size
at server,client

network E

Socket connectionSocket =
wel comeSocket . accept () ;

Transport Layer 3-18

TCP 3-way handshakei

client state J E server state
LISTEN . LISTEN
choose init seq num, x
send TCP SYN msg |~~~
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK
msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK: |~~~
this segment may contain | ACKbit=1, ACKnum=y+1
client-to-server data !
received ACK(y)
— indicates client is live
ESTAB
Transport Layer 3-19

TCP: closing a connection

< client, server each close their side of connection
= send TCP segment with FIN bit = |
+ respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN
« simultaneous FIN exchanges can be handled

Transport Layer 3-20

10

TCP: closing

a conhection

client state l H server state
ESTAB — ESTAB

client Socket . cl ose()

FIN_WAIT_1 can no longer
send but can
receive data

FIN WAIT 2 wait for server
T - close

TIMED_WAIT —‘

timed wait
for 2*max
segment lifetime

CLOSED L

T Fibit=1
ft=1, seq=x__

_— CLOSE_WAIT
ACKbit=1; ACKnum=x+1 .
can still
— send data
—_— LAST_ACK
‘/FLNbit=1, seq=y
can no longer
—~—— send data
ACKbit=1; ACKnum=y+1
\
CLOSED

Transport Layer 3-21

Chapter 3 outline

3.1 transport-layer
services

3.5 connection-oriented
transport: TCP

3.2 multiplexing and " segment structure

demultiplexing
3.3 connectionless

transport: UDP

reliable data transfer
= flow control
= connection management

3.4 principles of reliable 3.6 principles of congestion

data transfer

control
3.7 TCP congestion control

Transport Layer 3-22

11

Principles of congestion control

congestion:

< informally: “too many sources sending too much
data too fast for network to handle

+ different from flow control!
+ manifestations:
® |ost packets (buffer overflow at routers)
* long delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 3-23

Causes/costs of congestion: scenario |

original data:)\in throughput: }\out
. two senders, two -
receivers Host A
> one router, infinite unlimited shared
buffers .g output link buffers
[——

- output link capacity: R
> NO retransmission

Host B J
—

R/24----mmmommes

)\OUI
delay

Ain RR2 Ain R
> maximum per-connection « large delays as arrival rate, A,
throughput: R/2 approaches capacity

Transport Layer 3-24

12

Causes/costs of congestion: scenario 2

+ one router, finite buffers
+ sender retransmission of timed-out packet
= application-layer input = application-layer output: A, =

out
® transport-layer input includes retransmissions : A, > A,

@«J— A, : original data Y
—f—
®3— A\, original data, plus 1 out
retransmitted data
[{ Host /_ ﬂ
Host B finite shared output H

link buffers
Transport Layer 3-25

Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

+ sender sends only when
router buffers available

)\in R/2

L A, original data
copy Bl @<f— \" - original data, plus
retransmitted data

free buffer space! / ﬂ

Transport Layer 3-26

A—— A\

out

finite shared output
link buffers

13

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

L\, : original data
copy (Il 1 \',;: original data, plus
retransmitted data

out

no buffer space!

Host B E ﬂ

Transport Layer 3-27

Causes/costs of congestion: scenario 2

Idealization: known loss Ri2 |-
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if |
packet known to be lost N R

some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

Aout

[} A : original data

B 94— \',.: original data, plus
retransmitted data

A free buffer space! / \ H

Transport Layer 3-28

out

when sending at R/2,

14

Causes/costs of congestion:

scenario 2

Realistic: duplicates

« packets can be lost, dropped
at router due to full buffers

+ sender times out prematurely, <
sending two copies, both of

which are delivered

220

(&)

= timeout

Wé

-

B ¢

L\

_)\',

=}

n

n

free buffer space!

R/2

when sending at R/2,

some packets are
retransmissions
including duplicated
that are delivered!

L1 —)\

Transport Layer 3-29

Causes/costs of congestion: scenario 2

Realistic: duplicates

« packets can be lost, dropped
at router due to full buffers

+ sender times out prematurely, <
sending two copies, both of

which are delivered

=}

“costs” of congestion:

+ more work (retrans) for given “goodput”

R/2

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

« unneeded retransmissions: link carries multiple copies of pkt
» decreasing goodput

Transport Layer 3-30

15

Causes/costs of congestion: scenario 3

C/2

Aout

2

[” .
another cost ofcongestlon:

+ when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-31

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted
control: congestion control:
+ no explicit feedback « routers provide
from network feedback to end systems
+ congestion inferred = single bit indicating
from end-system congestion (SNA,
observed loss, delay DECbit, TCP/IP ECN,
+ approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-32

16

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and = segment structure
demultiplexing = reliable data transfer

3.3 connectionless = flow control
transport: UDP = connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

Transport Layer 3-33

TCP congestion control: additive increase
multiplicative decrease

« approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs
= additive increase: increase cwnd by | MSS every
RTT until loss detected
» multiplicative decrease: cut cwnd in half after loss

—— additively increase window size ...
—... until loss occurs (then cut window in half)

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size

time
Transport Layer 3-34

TCP Congestion Control: details

sender sequence number space
je—— CWNd ——>p|

IIIIIIIIJI Il

last byte ‘ L
ACKed sent, not-
yet ACKed

(“in-
flight”)

last byte
sent

< sender limits transmission:

Last Byt eSent - < cwnd

Last Byt eAcked ~

+ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:
« roughly: send cwnd

bytes, wait RTT for
ACKS, then send

more bytes

cwnd
RTT

rate = bytes/sec

Transport Layer 3-35

TCP Slow Start

« when connection begins,
increase rate
exponentially until first
loss event:

= initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

« summary: initial rate is
slow but ramps up
exponentially fast

Host A Host B

time

Transport Layer 3-36

18

TCP: detecting, reacting to loss

+ loss indicated by timeout:
» cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

= dup ACKs indicate network capable of delivering
some segments

= cwnd is cut in half window then grows linearly

« TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-37

TCP: switching from slow start to CA
Q: when should the

exponential
increase switch to 149 TCP Reno
linear? 124

A: when cwnd gets
to 1/2 of its value
before timeout.

_|ssthresh

(in segments)

ssthresh

Congestion window

Implementation: R R LR LR
» variable sst hr esh Transmission round

+ on loss event, SSt hr esh
is set to 1/2 of cwnd just
before loss event

Transport Layer 3-38

19

TCP throughput

+ avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

% W: window size (measuredin byres) Where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
= avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

W WW
W/2

Transport Layer 3-39

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

|

bottleneck
router
capacity R

TCP connec't'i':n 2

Transport Layer 3-40

20

