
Produced by: The International P-NET User Organization 590 004 02

for Process Automation

P-NET® is a registered trade mark.

©Copyright 1996 by International P-NET User Organization. All rights reserved.

P-NETThe Fieldbus

P-NET
- the European Fieldbus Standard

EN 50170, Volume 1

2

Applied P-NET Applications

Textile Production Plant

Test Line at Bosch-Siemens Dish Washing Machine Factory

Applied Building Automation

Animal Feeding & Climatic Control

3

P-NET in General
The P-NET Fieldbus is designed to connect distributed process components like
process computers, intelligent sensors, actuators, I/O modules, field and central
controllers, PLC’s etc., via a common two wire cable, as shown in fig. 1.

This replaces traditional wiring, where a great many cables are involved.

Process data (e.g. measurement values, valve signals) are transmitted digitally. P-
NET is also used for data collection, for configuration of nodes/sensors, and for down-
loading of programs.

Apart from the usual measurement values and status data, the bus provides a
bidirectional exchange of additional information concerning limit values, actuator
positioning and feedback signals, fault signals and internal system data.

P-NET can be used to download parameters and programs to modules, which then
control the process. The use of intelligent P-NET sensors and actuators also offers
much better diagnostic features than with traditional wiring.

Further comparisons with conventional wiring, show that the incorporation of P-NET
offers proved advantages when applied to industrial processes.

The result is a simplification of planning and installation, a reduction in the amount
and cost of cabling, a reduction in installation and maintenance costs, a reduction in
installation errors, leading to a more straightforward future expansion of applications.
Instant information about field device faults, and faults in the cable, can be detected
automatically by the network protocol.

P-NET applications are characterised by their low cost for a small system. The cost
rises linearly with the size of a system.

P-NET is as well suited for small plants, as for large plants having many controllers,
sensors, and interface modules. In addition, any such system is always ready for any
necessary expansion.

Figure 1: P-NET Fieldbus with distributed process components.

4

The History of P-NET
P-NET was conceived in 1983. The first product using this multi-master Fieldbus was
launched in 1984.

The multi-network and multi-port functions were added to the protocol specification
in 1986. The first operational P-NET multi-port product was produced in 1987.

The P-NET standard became an open and complete standard in 1989, for adoption
worldwide.

Due to an increasing interest in P-NET, the International P-NET User Organization
was formed a year later.

Application Areas
The P-NET Fieldbus has been used for many years, and more than 5000 applications
are now in operation worldwide. Applications range from simple installations with a
few I/O points, to very large and complex installations using many thousand I/O points.

P-NET applications are found in the process industry environment and in discrete
parts manufacturing plants.

The following typical examples show where P-NET is currently installed and running:
Dairies, breweries, environmental control in agriculture, animal feeding systems,
asphalt and concrete production, textile industry, milk/oil/fertilizer distribution trucks,
quality control systems, power plants, solar power plants, plastic moulding, ship engine
control, tank management/alarm systems (approved by German Lloyd, Bureau Veritas,
Norske Veritas, Lloyds Register of Shipping), data acquisition, water supply, building
automation, fuel management systems, (approved as legal for trade by PTB, NMI,
NWML, ...).

The typical P-NET application requires response times measured in ms, and a bus
length up to one km or more. There are other types of applications which demand a
response time measured in ìs. For these applications P-NET is not appropriate.

Principles of P-NET
The electrical specification of P-NET is based on the RS485 standard using a shielded
twisted pair cable. This allows a cable length of up to 1200 m without repeaters. Data
is sent as an asynchronous transmission in NRZ code.

P-NET interfaces are galvanically isolated, and up to 125 devices per bus segment
can be connected, due to a special clamp circuit, and again without the use of
repeaters.

P-NET is a very efficient Fieldbus protocol, in that it can handle up to 300 confirmed
data transactions per second, from 300 independent addresses.

Data can be transferred in the form of fully processed values (floating point), such as
temperature, pressure, current, voltage etc., or as blocks of 32 independent binary
signals, indicating valve states, switch positions etc.

This results in a performance of up to 9,600 binary signals per second being accessed
from anywhere within the complete system.

5

This high rate of fully acknowledged data transmissions can be achieved, because P-
NET slaves handle the processing of data and the reception or transmission of frames,
in parallel. The processing of a request by the slave is initiated as soon as the first
data bytes arrive. This is in contrast to dedicated chip solutions, where the entire
frame arrives before processing begins. In this way, the standard P-NET data rate of
76,800 bit/s, is not a limiting factor in performance.

The performance can be compared with systems using data rates up to 500,000 bit/
s. See a detailed description on page 17 “P-NET Compared with Dedicated Fieldbus
Chip Solutions”.

P-NET is a multi-master bus, which can accept up to 32 masters per bus segment. All
communication is based on the principle, where a Master sends a request, and the
addressed Slave returns an immediate response. Requests can be of a read or write
type. Masters and slaves are shown in fig 2.

Data transferred on the bus can be of a simple or complex type, to satisfy the
requirements of measurement and control. Simple types include boolean, byte, char,
word, integer, long integer, real, long real and timer. Complex types include array,
string, record and buffer.

The data format is a part of the P-NET standard.

The right to access the bus, is transferred from one P-NET master to another, by
means of a token. P-NET uses a method called “virtual token passing”, which does
not require messages to be sent over the bus.

When a master has finished bus access, the token is automatically passed on to the
next master, by a cyclic mechanism based on time. The method used in P-NET differs
from that used in other multi-master systems.

Other busses such as Profibus for example, use real message telegrams for transferring
the token. This results in an increase in master processing time, and reduces the
capacity of the bus.

The virtual token passing principle also accepts that a master might not even be
present. In this situation, all devices, including other masters, will continue performing
normally. See page 16 “Virtual Token Passing” for a detailed description.

Figure 2: Masters and slaves on a P-NET Fieldbus.

6

Multi-net Structures
The previously accepted way of designing a network architecture for a factory, was to
have the Fieldbus directly connected to the sensors and actuators. The Fieldbus would
then be connected to a cell-controller, and a number of cell-controllers would be then
connected to a cell-network, and so on, up through the hierarchy, ending with a high
speed backbone network. The data rate for the network on the next level up was
assumed to be a magnitude higher than on the lower networks.

This was perhaps a reasonable philosophy in the past, where all data had to eventually
end up in a powerful computer at the top level. The technique for today and the future,is
to distribute intelligence between the cell-controllers, interfaces and sensors. At each
level, the data becomes concentrated and regulating loops are typically closed within
the same bus.

The need for a fast data rate at the higher levels is now decreasing, as more intelligence
is distributed. This is the reason why P-NET may be used on several levels in a complete
factory automation system.

Dividing a system into cells, corresponding with each section of a plant, makes it
possible to shut down a single section without affecting others. Program execution
may be distributed in one or more independent processors per cell.

A software or hardware error in one cell, would not affect the others. An individual cell
now only has a limited need to exchange data with other cells, e.g. to start and stop
processes, to load recipes, to transfer production data etc.

In systems with real distributed intelligence, additional processing power can always
be added in the form of additional master controllers. It is therefore possible for a
system like this to be expanded.

Figure 3: A Multi-net structure with the P-NET Fieldbus

7

Among the available Fieldbus systems, only P-NET allows direct addressing between
several bus segments, also known as a multi-net structure. This feature is a specified
part of the P-NET protocol, and it can be built into the standard operating system of
multi-port masters. A multi-net structure is illustrated in fig. 3.

Communication is directed through the different bus segments via nodes with two or
more P-NET interfaces. This means that any master on one bus segment can
transparently access any node within any other bus segment, without the need for
special programs in the multi-port masters. See fig. 4.

The segmentation also makes it possible to have independent local traffic on each
bus segment, which increases the update rate and the data throughput throughout
the total system.

The benefits gained by dividing a system into smaller sections are highly significant,
because it limits the consequence of an error, to a single segment, which gives higher
system security. Furthermore, these multi-net features provide a natural redundancy,
which makes the total plant installation very robust with respect to errors. See also
fig. 3. An important advantage of the P-NET multi-net topology, is that there is no
need for a hierarchical structuring of the bus segments. This is of great benefit when
expanding existing P-NET installations, and when coupling to other networks.

An attempt to connect two segments within one node, using a bus system without
this multi-net facility, requires a special program in that node. Such a program needs
to collect all the data from all devices in one segment to make it available to the other
segment, which is known as creating “process images”.

With the large amount of data that are available in today’s intelligent nodes, it is
almostimpossible to update and maintain a true “process image” for a complete bus
segment. Such a procedure occupies a significant percentage of the bus capacity
and requires a large amount of memory. Furthermore, it is expensive to create and
test a dedicated program for each segment connection.

P-NET does not require such complex “process images” to be built.

Figure 4: Transparent access through multi-port masters to other bus segments.

8

Advantages of the P-NET Protocol
All nodes that conform to the P-NET standard can be directly connected to the bus
and will immediately communicate together, because P-NET uses only one data rate,
and only one choice is given for each of the communication layers.

This differs from other standards, which allow many variations on each layer, resulting
in many variants that are not able to communicate together.

Any P-NET module, including a master, can be powered down or connected to or
disconnected from the bus, without interfering with the rest of the bus system.

Consequently, modules can be exchanged during system operation, and a system
can be expanded while the remaining production system continues to run.

The need for configuration of communication parameters in P-NET is much reduced
compared with other systems. In slave modules, the P-NET system integrator only
has to set the node addresses, and in master modules, he only needs to define the
node address and the number of masters.

Therefore, training is reduced and allows any qualified technician to understand and
install a P-NET system.

The distributed processing power of a system can be increased, by simply connecting
additional masters.

Special procedures have been included in the P-NET standard, making it possible to
change the address of a single node on the network, by means of its unique serial
number. This allows individual P-NET node addresses to be changed while the system
is still running.

Dip switches and other mechanical mechanisms can be avoided, and it is therefore
possible to build hermetically sealed P-NET nodes (e.g. IP-67).

When designing a new device for use with P-NET, benefits will be seen from the fact
that P-NET can be used to access any logical or physical address within the device,
decided upon by the manufacturer. When a device is implemented with P-NET, both
the test procedures performed during the development phase for the application
program within the device, and the calibration and maintenance procedures used in
the future, can be simplified. P-NET can therefore be used to look inside the device in
order to monitor program variables.

The result of a measurement made by a slave, is presented to a master in a pre-
processed form, in SI (metric) engineering units. The benefit is significant, since no
repetitive scaling or conversion needs to be done by the master(s), leading to
considerable savings in processing power. For example, a temperature measurement
will be converted to a floating point value by the slave (IEEE 754 standard), and will
be presented to all masters requesting the data in degrees centigrade.

Identifiers used for accessing the physical variable on the network, are mapped via a
‘SOFTWIRE’ list. This list is generated while the application program is being compiled.
Therefore, no real time translation is required, leading to very fast data access.

To ensure real time data collection, each frame transmitted on the network is restricted
to 56 data bytes. If the requested data length is higher than 56 bytes, it is
automaticallydivided into several successive transmissions.

9

SLAVE

PID

Calculator

Digital I/O #1

Digital I/O #2

Digital I/O #3

Digital I/O #4

Digital In #1

Digital In #2

Analog In #1

Analog In #2

Analog Out #1

Pt-100

Heater

Level
sensor

P-NET

Intelligent P-NET Modules
Typical P-NET slave modules give the system integrator more than just Input / Output
functions. They very often contain additional process oriented functions varying from
simple limit switch monitoring, to PID regulator or program channels, allowing the
system integrator to configure local control loops or specify process steps.

The diagram in fig. 5 shows how a standard P-NET I/O-module can handle the
temperature control, and the loading and unloading of products for a heating vessel
within a chemical plant.

In this example, the internal process functions of the module take care of temperature
and level regulation, and the control of filling. Only the set points for temperature and
level are required from a P-NET master.

Another example of a slave module could be a weight transmitter, where the analogue
signal from a load cell is continuously converted, scaled and stored, within the memory
of the slave. When a request is received from a master, the slave immediately responds
with the latest stored result. Error checking is also continuously performed within the
slave, and the master is notified if any error has occurred, by a code in the response
message, when the slave is requested.

“Layer 8”: P-NET Channel Structure
Typically, a P-NET Fieldbus device is a sensor, an actuator or an interface module. It
can relate to one or more process signals, i.e. a digital output or an analog input.
Each process signal is associated with additional information, apart from just the
state or the value of the signal. These variables, which are related to the process
signal, deal with specific functions for configuration, conversion, scaling, filtering,
error messages etc.

Figure 5: An intelligent P-NET module in a chemical plant.

10

SLAVE

PID

Calculator

Pt-100

Level
sensor

P-NET

Digital I/O #1

Digital I/O #3

Digital I/O #4

Digital In #1

Digital In #2

Analog In #1

Analog In #2

Analog Out #1

Analog Out #2

Digital I/O #2

SWNo

x0

x1 *

x2

x3 *

x4 *

x5 *

x6 *

x7 *

x8 *

x9

xA *

xB *

xC *

xD

xE

xF

Description

FlagReg

OutTimer

Counter

OutCurrent

OperatingTime

UserByteArray

FBTimer

FBPreset

OutPreset

ChConfig

MinCurrent

MaxCurrent

UserRealArray

Maintenance

ChType

ChError

Value

5,3

0

0,4

200,5

5,9

8,0

2,0

0,25

0,81

s

A

s

s

s

s

A

A

Channel: Digital I/O

In P-NET, this collection of related variables and functions for a single process signal
is regarded as a Process Object , and is called a Channel .

A Channel contains all the necessary data to support the required control functions
for the process object. It also includes suppor t for maintenance and technical
management of the plant equipment.

A Channel is structured as 16
registers, each having their own
relative logical addresses, called
SOFTWIRE numbers (SWNo).

These 16 variables or constants
within a Channel, can be of any type,
including complex, and can be
located in dif ferent memory
technologies.

In order to give a specific example of
a standard interface Channel, a
Digital I/O channel is illustrated in fig.
6.

Such a Channel can be configured
for various functionality, including
automatic functions. These functions
are input, output, one shot output,
timer output etc.

The function is selected by setting a
code in the ChConfig register. When
the output is configured for timer
functions, the preset registers SWNo
x7 & x8 are used.

While the input/output pin is active, the OperatingTime register measures the time,
and a transition on the pin will increment the Counter, to record input or output
activations.

The current in the output load is measured, and can be read in SWNo x3.

MinCurrent and MaxCurrent can be used as a kind of feedback signal to see if the
load is connected, and to protect the output and the load.

The Maintenance register can hold information about when and how the last
maintenance was performed for the connected valve. The register called ChType must
be present in all channels. It is a Record, consisting of a unique number, which defines
the channel type, plus an array of boolean, indicating which registers are implemented.

The registers marked “*“ are not mandatory, and may be declared as unused.

One of the important features of P-NET, is error message handling. Therefore, each
Channel has an Error Code register called ChError. This register contains error
information related to the Channel and the values in its registers.

Examples of errors include Overload, Signal disconnected etc.

Figure 6: The channel structure of a Digital I/O.

11

A channel need not only deal with process signals, but can also apply to other kinds
of data, such as internal function-blocks with corresponding parameters.

An example of such a Channel is a PID regulator, where the output values are the
result of a calculation. Other standardised channel type examples include a printer
channel, a Communication channel, a program channel etc.

This means that nodes can have different I/O structures. For example, one node
might have 16 Digital I/O + 2 analog I/O channels, and another node, 8 Digital I/O +
4 Analog I/O channels, but each single I/O of equal type will be seen as the same by
the master, no matter what kind of node it is part of.

The Service channel is an important standardised channel type, which must be
included in all nodes, whether this is a complex collection of different channels, or
just a simple sensor.

This channel holds information about the node address, serial number, manufacturers
identity, overall node error data, and any other data associated with the node. This
channel always has a SWNo of 0, and access to the service channel is therefore the
same for all nodes. This channel is also used when identifying an unknown node.

The resultant advance of this channel standardisation philosophy, is that from a P-
NET master point of view, each channel can be seen and treated in the same way, no
matter who manufactured the device, or in which node it is located.

The standardisation also makes it possible to write general programs, which can
beused to configure such channel types or to read or write into the registers,
independent of the channel’s location.

Access to P-NET from PC’s
PC’s are often used in P-NET installations as one of the masters. PC’s are normally
connected to P-NET by means of plug in cards.

A product called VIGO has been developed for P-NET.

VIGO is a PC based Fieldbus Management System.
It enables a physical plant to be described in terms
of data, related data structures and where data is
located.

VIGO is also a communication system that manages
data security and integrity for data enquiries made
within the plant.

VIGO keeps track of the relationship between the
physical objects within the plant, and the associated

Fieldbus nodes. It also includes the set of files describing the related control programs,
configuration and calibration parameters, as well as tools for configuration, backup,
download etc.

The routing and handling of several simultaneous information packages for the same,
or different networks, are also managed by VIGO, via a real-time communication
kernel. When several applications try to access the same bus system, problems will
occur in a Windows multi-task environment. This is solved by VIGO, which ensures
that communication packages and messages do not get mixed.

12

Application

Virtual

Object

Physical Object

VIGO

The is

identified by the

Virtual Object

Virtual Identifier

The is

identified by the

Physical Object

Physical Identifier

The uses

a to

access a

Application

Virtual Object

Physical Object

A facility available to enable the fast real-time exchange of data between MS-Windows
applications is called “OLE2 Automation” (Object Linking and Embedding).

VIGO is an OLE2 Automation Server, which creates a consistent and transparent
interface from the user program (application), to the physical elements (objects) within
the plant.

In this way, VIGO provides a simple interface to standard program packages such as
Visual Basic and Visual C++, spreadsheets, databases, Man-Machine interfaces and
other visualisation programs such as SCADA.

Below is shown a Visual Basic program example (EXCEL macro language), using
three easy steps:

Step 1: set AA = Createobject(“VIGO”)

VIGO creates a virtual object: AA, which
then becomes part of the Visual Basic
programming environment

Step 2: AA.PhysId = “Setpoint”

The virtual object AA is made to point to
the physical object, by assigning the
physicalidentifier to a proper ty called
PhysId.

Step 3:

 X = AA.ExFloat (Get Setpoint)

or AA.ExFloat = 37,0 (Set Setpoint)

All manipulation of the physical object is
performed via the virtual object. See fig. 7.

To operate on the object, a type property must be appended to indicate the type of
variable in the node. Exfloat indicates that the object variable is of a real type (floating
point), Exbool would indicate a boolean type, etc.

The object can be used in normal assignments, such as set or get functions. Many
objects can be created for several independent applications.

VIGO is a collection of several program elements. It is an open system as regards
allowing the addition of elements for networks from other vendors. All these elements
are handled by and integrated into VIGO, leading to a very simple and well defined
interface to any Fieldbus data. The elements of VIGO are shown in fig. 8.

Application: An independent user application program, which communicates via VIGO.

VIGOSERV: An OLE2 Automation server that provides the interface between VIGO
and the applications.

IDC: An Instruction/Data Converter, which converts a VIGO service into a specific
network instruction, and sets up data using the correct syntax suitable for the
destination node, and vice versa.

HUGO2: A real-time communication kernel that provides the possibility of executing
several Fieldbus communication applications in parallel.

Figure 7.

13

HUGO2 API

HUGO2 API

Manager
Information

Base

MAP File

Compiler

Project
ConfigurationDebugger

Backup-
Restore

Configuration

Editor

VIGOSERV
Application Programmers Fieldbus Interface

P-NET
Protocol

Profibus
Protocol

WorldFip
Protocol

?
Protocol

HUGO2
Realtime communication kernel for MS Windows

P-NET

Driver

Profibus

Driver

WorldFip

Driver

?

Driver

Common Application Service Interface:
OLE2 Automation Interface

Common Communication Service Interface:
MMS Interface

P-NET
HW

Profibus
HW

WorldFip
HW

?
HW

Instruction Data

Converter (IDC)

Network Drivers

Hardware Drivers

Applications
eg. Visual Basic, Excel, Access, Visual C++,

Novell
Driver

Ethernet
HW

NetBios
Driver

Fieldbuses Local Area Networks

VIGO

The Manager Information Base : The MIB contains a set of data structures, which
describe the physical system. The MIB translates a variable name into a specific
node address, variable address, type specification, etc.

The Drivers: These take care of sending and receiving information via a specific
network.

Software
Besides the standard OLE2 automation method for exchanging data under MS
Windows, P-NET drivers for DDE (Dynamic Data Exchange) also exist.

Software tools for monitoring and debugging, Graphic Control Systems, tools for down
loading programs and for configuration, editors etc. are all available for P-NET.

Process-Pascal is available as a programming tool for P-NET controllers, which
isStandard ISO-Pascal with additional facilities for declaring variables on the network,

Figure 8: The elements of VIGO.

14

Micro-

processor

Dualport

RAM

Micro-/Chip-

processor

Dip-switches

Application Communications

Node

Fieldbus

Fieldbus

interface

Micro-

processor

Application &

Communications

P-NET Node

Fieldbus =

Fieldbus

interface

P-NET

and for task management in a multi-tasking environment. Programs written in Process-
Pascal use global P-NET variables as if they were local variables. The only difference
is to be found in the variable declaration technique. Multi-tasking facilities are also
included in Process-Pascal, providing up to 64 tasks in each master.

Ease of P-NET Implementation
One of the reasons for the high number of P-NET
installations now operating, can be related to the
low cost of node implementation.

The principle of P-NET, is to use the same
microprocessor to control the main task of the node
(the application), as well as the communication task.
Data is only stored in one location. By incorporating
P-NET as an integrated part of the device, P-NET
can be used to perform configuration and to read
the status of the device.

Typically this means that dip-switches for selecting
a baud rate and setting the node address can be
avoided. See fig. 9.

Other Fieldbus types use an add-on circuit in each
node, in the form of a separate chip / microprocessor
for communication. Data is exchanged through a
dualport RAM. This principle always results in a
significantly higher cost for the final product. See
fig. 10.

There is no need for a specific chip-set when
implementing the P-NET protocol, because the P-
NET communication program for a slave requires
only a few kbytes of code. This provides the
opportunity to use a common standard single chip
microprocessor, which includes a UART. e.g. H8-
300, 68HC11, 6805, 80851, 8051 etc.

It can be concluded therefore, that a P-NET Fieldbus
node need be no more expensive than traditional
microprocessor equipment, having no Fieldbus
connection.

Many years of experience have been gained in the
implementation of P-NET nodes, and assistance is
avai lable for manufacturers, through the
International P-NET User Organization.

Figure 9: P-NET implementation.

Figure 10: Typicalchip implemen-
tation in other fieldbus systems.

15

NA 11

NA 2

NA:
NA:X

NA 10

NA 70

NA ??

NA:Y

Multimaster
Bus Access

Physical Link

Layer 1

Data Link

Layer 2

Network

Layer 3

Service

Layer 4

Application

Layer 7

Port N

Port 2
Port 1

Master
Receive

Master
Buffer

Slave
Receive

Slave
Transmit

Bus I

interface

Bus II

* Bit 7 in the first address byte is "1"

C
o
n
v
e
r
t

A
d
d
r
e
s
s

NA X NA Y

Internal "Bus"

Node Add

Error

P-NET

Service

SW

List

Data

Memory

T

A

S

K

Program

Service

13
12

11
10

<Frame> <Packet> <Packet> <Command>

*

* *

*

*

ACL

P-NET Architecture
P-NET is specified and implemented according to the Open Systems Interconnection
Reference Model, on layers 1, 2, 3, 4, and 7, as shown in the diagram in fig. 11.

Normally, a Fieldbus is only implemented on layers 1,2 and 7, but since P-NET features
the multi-net structure, the protocol also implements layers 3 and 4.

Layer 1 is concerned with transmitting raw bits over the bus. It specifies the cable,
how a “1” and a “0” is represented on the bus, what the voltage level is, etc.

Layer 2 takes care of the multi-master token, packs the data to be sent into a frame,
including source and destination addresses, and performs error detection.

Layer 3 is the P-NET “post office”, which receives and sends the frames according to
the destination address. A message may be required to be sent out of another P-NET
port, or into the P-NET service, or back to the requesting application, or return a
message indicating an unknown address. It also performs the address conversion
necessary to ensure a response finds its way back.

Layer 4 handles two different tasks. The first provides the P-NET service, which reads
or writes data to internal memory via the SOFTWIRE list, or reroutes a request, if the
SOFTWIRE list indicates that the variable is located in another node.The second
task holds details about the number ofrequests which have been sent out but are
waiting for a reply. When the reply arrives, it is sent back to the calling application
task.

Layer 7 is used by application programs to access variables in other nodes. This is
done by sending a command block containing references to the SOFTWIRE list, which
is where detailed information such as node address, internal address etc. is specified.
The SOFTWIRE list is also used for internal variables.

Figure 11: P-NET architecture based on ISO reference model.

16

40
50

60
70

80

Action

Bus

Access-

counter

Idle-Bus

Bit-period

Counter

3 4 1 2 3 4

Virtual Token Passing
Each P-NET master is given a node address (NA), between 1 and the number of
masters expected within a system.

All masters contain an “idle bus bit period counter” which increments for each bit
period the bus is idle, but is reset to zero when the bus becomes active. Each master
also has an access counter, which is incremented when the idle bus bit period counter
reaches 40, 50, 60, ...

When the access counter in a master is equal to its node address, that master holds
the token, and is allowed access to the bus. When the access counter exceeds the
maximum number of masters, it is preset to 1.

The diagram in fig. 12 shows an example of the token principles in P-NET, within a
system configured for 4 masters.

First, master 3 has the token, and is receiving a response from a slave. Then the bus
becomes idle.

When 40 idle bit periods have been counted, all access counters are incremented by
1, and master 4 is allowed access to the bus. Since master 4 does not have anything
to send, and after 50 bit periods, master 1 is allowed access to the bus.

Master 1 does not need bus use either (it may not even be present), so the virtual
token is passed to master 2, when the idle bus bit period counter reaches 60.

Since masters 2 and 3 do not require access, the token is eventually passed on to
master 4, when the idle bus bit period counter is equal to 80. This time, master 4 does
require access. Data appears on the bus, so all idle bus bit period counters are reset
to zero.

The passing of the virtual token takes place within only 130 ìS or 10 bit periods, and
no data is actually sent over the bus. A single network can have up to 32 masters with
equal priority, and no hierarchy needs to be managed.

Consequently, P-NET does not require any bus arbitrator functions. Virtual token
passing is much more efficient than passing the token by message.

Figure 12: Vitual token passing.

17

P-NET Compared to Dedicated Fieldbus Chip Solutions
Bus systems using special chips (e.g. Profibus FMS), typically receive the complete
frame first. Then the chip sends an acknowledge to the master and an interrupt to the
host CPU.

Slave processing is then started, and when all data is ready, it is transferred to the
chip. Now the Master has to make a second request to obtain the desired result. This
is illustrated in the diagram in fig. 13.

P-NET slaves handle the processing of data and the reception and transmission of
frames, in parallel. The processing of the request begins in the slave, as soon as the
first data bytes arrive. In this way, the standard P-NET data rate of 76,800 bit/s, is not
a limiting factor in performance.

Every P-NET slave module must answer a request within 390 microseconds
(“immediate response”). This eliminates the need for multiple requests for a single
variable, or even continuous polling until a result is ready. The immediate response
eliminates the need for buffers in the slave to contain a queue of requests or polling
from different masters.

The immediate response, coupled with parallel operation and fast token passing,
results in a performance similar to other bus systems with a much higher data rate
(e.g. 500 kbit/s).

One of the drawbacks of increasing the data rate, is that it leads to a significant
reduction in the Fieldbus cable length allowed. For example, at 76.8 kbit/s the bus
length can be in the region of 1.2 Km, but at 500 kbit/s the bus length would need to
be reduced to 200 m.

The consequence of this is, that for a comparable full size system, 5 extra repeaters
would have to be considered for the higher rate system.

Figure 13: P-NET communication compared to Profibus chip principle.

International P-NET User Organization
Nearly a 100 companies are now members of the International P-NET User
Organization. The membership fee (1995) for companies is 1.500 DKr (approx. 400
DM or £160).

Special arrangements are available for universities and other educational institutions.

By enroling in the International P-NET User Organization, a new member will receive
one copy of the P-NET standard.

Members have the right to use the P-NET protocol and the P-NET logo in products,
without any royalty.

The International P-NET User Organization arranges International P-NET
Conferences, takes part in international Standardization work and disseminates
information about P-NET.

Literature references can be requested from the International P-NET User
Organization.

To obtain additional information contact the head office or your local society:

Head Office:

• International P-NET User Organization,
P.O.Box. 192,
DK-8600 Silkeborg
Denmark
Phone +45 87 200 396, Fax +45 87 200 397
e-mail: P-NET@post4.tele.dk

Local Societies:

• b+ Prof. Dr.-Ing. Jörg Böttcher, Deggendorf, Germany
Phone +49 991 340 897, Fax +49 991 340 447
e-mail: 0991340897-0001@t-online.de

• PROCES-DATA (UK) Ltd. , Oxon, England
Phone +44 (0) 1491 828 200, Fax + 44 (0) 1491 828 201
e-mail: pnet@easynet.co.uk

• TECNOCON, Vale de Cambra Cedex, Portugal
Phone +351 56 412 789, Fax +351 56 412 792

• CONFLOW Technologies Inc., Ontario, Canada
Phone +1 905 840 6800, Fax +1 905 840 6799

Applied P-NET Applications

Factory Environmental Control

Train Fuel Management System at british Rail

P-NET Conference and Exhibition Participation

Fully Automated Car & Passenger Ferry in Holland

20

Beer Barrel Filling Line in UK Brewery

Milk Truck Data Collection System

Complete Plant for the Concrete Industry

Cheese Production Plant Control System

Fiscal Metering on Oil Distribution Truck

