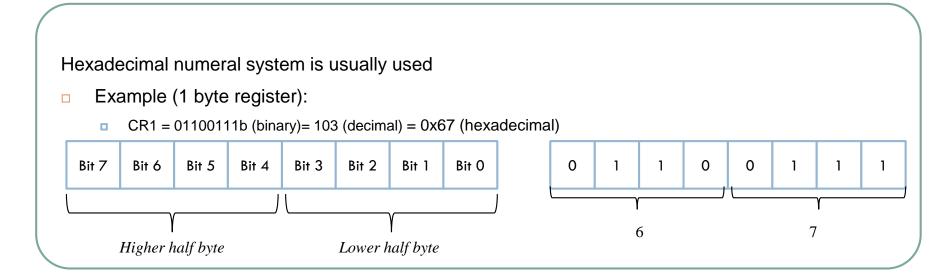
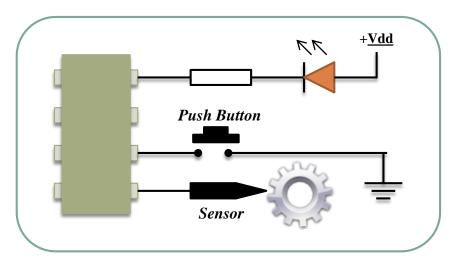
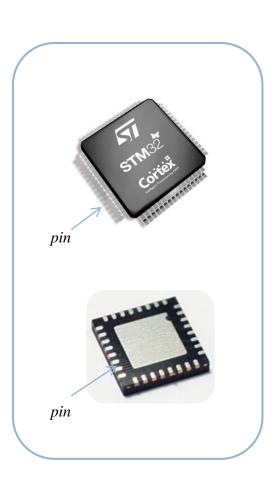


LABORATORIO: INTRODUZIONE AI MICROCONTROLLORI STM32 NUCLEO

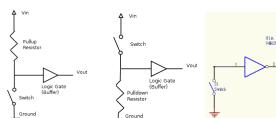
GPIO




Configuration Registers


- In order to use a peripheral, its configuration register must be set
- Registers are memory location (usually 1, 2 or 4 bytes long) where each single bit has a specific meaning
- Each peripheral has its own configuration registers.
- Each register has a reserved name. They are listed and detailed in datasheets

Ports


- General Purpose I/O Ports are standard peripherals for communication from/to outside .
- They can be configure as input or output
- Several GPIO pins are divided into PORTS (usually 8 or 16 pins): PortA, PortB, etc.
- Example:
 - Port A pin 0, Port A pin 1, ... Port A pin 15 (some pin may be missing)

GPIO Functional Description

- Each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes:
 - Input floating
 - Input pull-up
 - Input-pull-down
 - Analog
 - Output open-drain with pull-up or pull-down capability
 - Output push-pull with pull-up or pull-down capability
 - Alternate function push-pull with pull-up or pull-down capability
 - Alternate function open-drain with pull-up or pull-down capability
- By means of configuration registers atomic read/modify/accesses to any of the GPIO registers is allowed.

GPIO Registers

□ I/O port control registers

- GPIOx_MODER, I/O mode (input, output, AF, analog)
- GPIOx_OTYPER, output type (pushpull or open-drain)
- GPIOx_OSPEEDR, speed
- □ GPIOx_PUPDR, the pullup/pull-down whatever the I/O direction

□ I/O port data registers

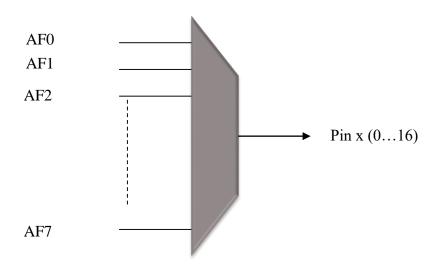
GPIOx_IDR

The data input through the I/O are stored into the input data register, a read-only register

■ GPIOx ODR

stores the data to be output, it is read/write accessible

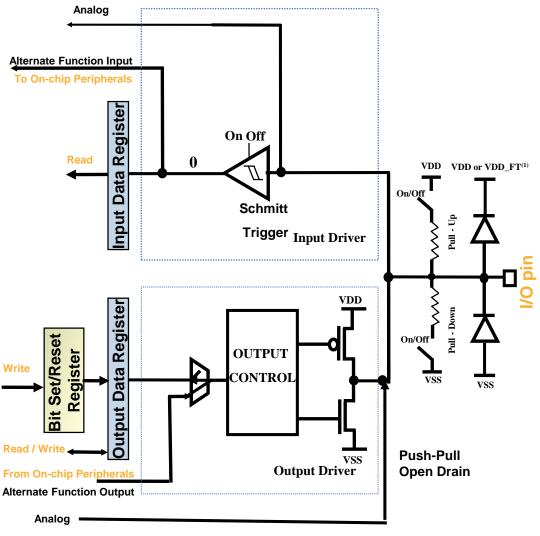
I/O data bitwise handling


GPIOx_BSRR

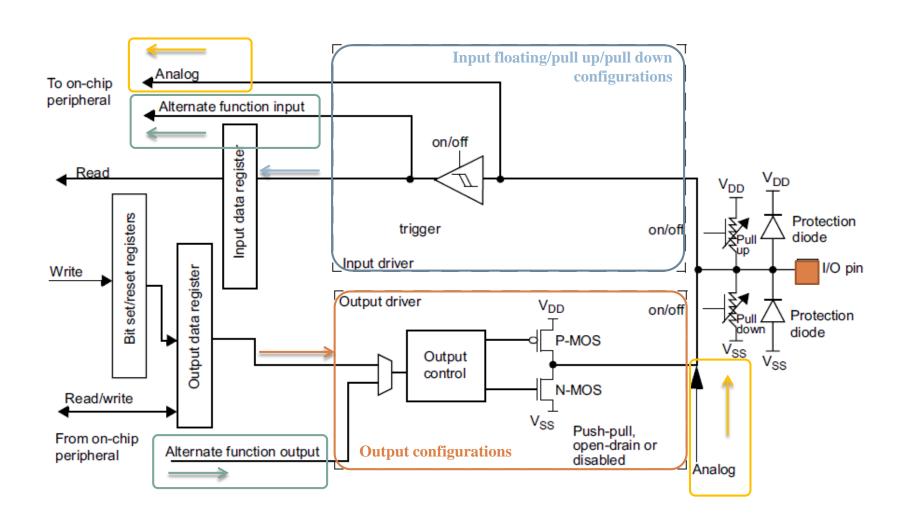
To each bit in GPIOx ODR, correspond two control bits in GPIOx BSRR: BS(i) and BR(i).

When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i) resets the ODR(i) corresponding bit.

Alternate Functions features


- Most of the peripherals shares the same pin (like USARTx_TX, TIMx_CH2, I2Cx_SCL, SPIx_MISO, EVENTOUT...)
- Alternate functions multiplexers prevent to have several peripheral's function pin to be connected to a specific I/O at a time.

GPIO Configuration Modes


7

MODER(i) [1:0]	OTYPER(i)	OSPE [E	EDR(i) B:A]	PUPDR(i) [1:0]		I/O configuration	
01	0	SPEED [B:A]		0	0	GP output	PP
	0			0	1	GP output	PP + PU
	0			1	0	GP output	PP + PD
	0			1	1	Reserved	
	1			0	0	GP output	OD
	1			0	1	GP output	OD + PU
	1			1	0	GP output	OD + PD
	1			1	1	Reserved (GP output OD)	
10	0	SPEED [B:A]		0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
	0			1	1	Reserved	
	1			0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Reserved	
00	х	х	х	0	0	Input	Floating
	X	х	х	0	1	Input	PU
	х	х	х	1	0	Input	PD
	х	х	х	1	1	Reserved (inpu	ut floating)
11	х	х	х	0	0	Input/output	Analog
	X	х	х	0	1	Reserved	
	X	X	х	1	0		
	X	х	х	1	1		

 $[\]ast$ In output mode, the I/O speed is configurable through OSPEEDR register: 2MHz, $10 \rm MHz$ or $50 \rm MHz$

Basic Structure of a Standard I/O Port Bit

STM32 Configuration Example

STM32 libraries allows to configure easily peripherals.

Configure GPIO PC11 & PC12 as Output Push-Pull

where GPIO_InitTypeDef is defined as: