
LABORATORIO:

INTRODUZIONE AI MICROCONTROLLORI

STM32 NUCLEO

GPIO

Ing. Antonino Raucea

1

antonino.raucea@dieei.unict.it

Configuration Registers

 In order to use a peripheral, its configuration register must be set

 Registers are memory location (usually 1, 2 or 4 bytes long) where each

single bit has a specific meaning

 Each peripheral has its own configuration registers.

 Each register has a reserved name. They are listed and detailed in

datasheets

Hexadecimal numeral system is usually used

 Example (1 byte register):

 CR1 = 01100111b (binary)= 103 (decimal) = 0x67 (hexadecimal)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Higher half byte Lower half byte

0 1 1 0 0 1 1 1

6 7

2

Ports

 General Purpose I/O Ports are standard peripherals for

communication from/to outside .

 They can be configure as input or output

 Several GPIO pins are divided into PORTS (usually 8 or

16 pins): PortA, PortB, etc.

 Example:

 Port A pin 0, Port A pin1, … Port A pin 15 (some pin may be missing)

3

pin

pin

Sensor

Push Button

+Vdd

GPIO Functional Description

 Each port bit of the general-purpose I/O (GPIO) ports can be individually

configured by software in several modes:

 Input floating

 Input pull-up

 Input-pull-down

 Analog

 Output open-drain with pull-up or pull-down capability

 Output push-pull with pull-up or pull-down capability

 Alternate function push-pull with pull-up or pull-down capability

 Alternate function open-drain with pull-up or pull-down capability

 By means of configuration registers atomic read/modify/accesses to any of

the GPIO registers is allowed.

4

GPIO Registers

 I/O port control registers

 GPIOx_MODER, I/O mode (input, output, AF, analog)

 GPIOx_OTYPER, output type (pushpull or open-drain)

 GPIOx_OSPEEDR, speed

 GPIOx_PUPDR, the pullup/pull-down whatever the I/O direction

 I/O port data registers

 GPIOx_IDR

The data input through the I/O are stored into the input data register, a read-only register

 GPIOx_ODR

stores the data to be output, it is read/write accessible

 I/O data bitwise handling

 GPIOx_BSRR

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i).

When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i) resets the ODR(i) corresponding bit.

5

Alternate Functions features

 Most of the peripherals shares the same pin (like USARTx_TX, TIMx_CH2,

I2Cx_SCL, SPIx_MISO, EVENTOUT…)

 Alternate functions multiplexers prevent to have several peripheral’s function pin to
be connected to a specific I/O at a time.

6

AF0

AF1

AF2

AF7

Pin x (0…16)

GPIO Configuration Modes

(1) VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

To On-chip Peripherals

Analog

From On-chip Peripherals

Push-Pull

Open Drain Output Driver

I/
O

 p
in

VSS

On/Off

P
u

ll
 -

U
p

P
u

ll
 -

D
o
w

n

VDD

On/Off

B
it

 S
e

t/
R

e
s

e
t

R
e
g

is
te

r

In
p

u
t

D
a
ta

 R
e
g

is
te

r
O

u
tp

u
t

D
a

ta
 R

e
g

is
te

r

Read / Write

Alternate Function Input

Alternate Function Output

Schmitt

Trigger

VDD

VSS

0

Input Driver

Read

Write

On Off

VDD or VDD_FT(1)

VSS

OUTPUT

CONTROL

Analog
* In output mode, the I/O speed is configurable through OSPEEDR register: 2MHz,

10MHz or 50MHz

7

Basic Structure of a Standard I/O Port Bit

8

Output configurations

Input floating/pull up/pull down

configurations

STM32 Configuration Example

STM32 libraries allows to configure easily peripherals.
 Configure GPIO PC11 & PC12 as Output Push-Pull

GPIO_InitTypeDef GPIO_InitStructure; /* Pointer to a GPIO_InitTypeDef structure that

contains the configuration information for the

specified GPIO peripheral */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12; /* Specifies the GPIO pins to be

configured  Two GPIO pins selected*/

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; /* Specifies the operating mode for the selected

pins  Output push-pull */

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; /* Specifies the speed for the selected pins */

GPIO_Init(GPIOC, &GPIO_InitStructure); /* Send command, configure GPIOs*/

 where GPIO_InitTypeDef is defined as:
typedef struct {

uint16_t GPIO_Pin; /* Specifies the GPIO pins to be configured. */

GPIOSpeed_TypeDef GPIO_Speed; /* Specifies the speed for the selected pins.*/

GPIOMode_TypeDef GPIO_Mode; /* Specifies the operating mode for the selected pins.*/

} GPIO_InitTypeDef;

9

