
1

Transport Layer 3-1

Chapter 3- parte B outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-2

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

� full duplex data:
� bi-directional data flow

in same connection

� MSS: maximum segment
size

� connection-oriented:
� handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

� flow controlled:
� sender will not

overwhelm receiver

� point-to-point:
� one sender, one receiver

� reliable, in-order byte
steam:
� no “message

boundaries”

� pipelined:
� TCP congestion and

flow control set window
size

2

Transport Layer 3-3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
receive window

Urg data pointerchecksum

FSRPAU
head
len

not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-4

TCP seq. numbers, ACKs

sequence numbers:

�byte stream “number” of
first byte in segment’s
data

acknowledgements:

�seq # of next byte
expected from other side

�cumulative ACK

Q: how receiver handles
out-of-order segments

�A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd
urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

3

Transport Layer 3-5

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-6

TCP round trip time, timeout

Q: how to set TCP
timeout value?

� longer than RTT
� but RTT varies

� too short: premature
timeout, unnecessary
retransmissions

� too long: slow reaction
to segment loss

Q: how to estimate RTT?
� SampleRTT: measured

time from segment
transmission until ACK
receipt

� ignore retransmissions

� SampleRTT will vary, want
estimated RTT “smoother”

� average several recent
measurements, not just
current SampleRTT

4

Transport Layer 3-7

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
ill

is
ec

o
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

� exponential weighted moving average
� influence of past sample decreases exponentially fast
� typical value: αααα = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

Transport Layer 3-8

� timeout interval: EstimatedRTT plus “safety margin”
� large variation in EstimatedRTT -> larger safety margin

� estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, ββββ = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

5

Transport Layer 3-9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-10

TCP reliable data transfer

� TCP creates rdt service
on top of IP’s unreliable
service
� pipelined segments

� cumulative acks

� single retransmission
timer

� retransmissions
triggered by:
� timeout events

� duplicate acks

let’s initially consider
simplified TCP sender:
� ignore duplicate acks

� ignore flow control,
congestion control

6

Transport Layer 3-11

TCP sender events:

data rcvd from app:

� create segment with
seq #

� seq # is byte-stream
number of first data
byte in segment

� start timer if not
already running
� think of timer as for

oldest unacked
segment

� expiration interval:
TimeOutInterval

timeout:

� retransmit segment
that caused timeout

� restart timer

ack rcvd:

� if ack acknowledges
previously unacked
segments
� update what is known

to be ACKed

� start timer if there are
still unacked segments

Transport Layer 3-12

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

7

Transport Layer 3-13

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

8

Transport Layer 3-15

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

Transport Layer 3-16

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

� receiver “advertises” free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
� RcvBuffer size set via

socket options (typical default
is 4096 bytes)

� many operating systems
autoadjust RcvBuffer

� sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

� guarantees receive buffer
will not overflow

receiver-side buffering

9

Transport Layer 3-17

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-18

Connection Management

before exchanging data, sender/receiver “handshake”:
� agree to establish connection (each knowing the other willing

to establish connection)

� agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =
newSocket("hostname","port
number");

Socket connectionSocket =
welcomeSocket.accept();

10

Transport Layer 3-19

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 3-20

TCP: closing a connection

� client, server each close their side of connection
� send TCP segment with FIN bit = 1

� respond to received FIN with ACK
� on receiving FIN, ACK can be combined with own FIN

� simultaneous FIN exchanges can be handled

11

Transport Layer 3-21

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Transport Layer 3-22

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

12

Transport Layer 3-23

congestion:
� informally: “too many sources sending too much

data too fast for network to handle”

� different from flow control!

� manifestations:

� lost packets (buffer overflow at routers)

� long delays (queueing in router buffers)

� a top-10 problem!

Principles of congestion control

Transport Layer 3-24

Causes/costs of congestion: scenario 1

� two senders, two
receivers

� one router, infinite
buffers

� output link capacity: R

� no retransmission

� maximum per-connection
throughput: R/2

unlimited shared
output link buffers

Host A

original data: λin

Host B

throughput: λout

R/2

R/2

λ o
ut

λin R/2

de
la

y

λin

� large delays as arrival rate, λin,
approaches capacity

13

Transport Layer 3-25

� one router, finite buffers

� sender retransmission of timed-out packet
� application-layer input = application-layer output: λin =

λout

� transport-layer input includes retransmissions : λin λin

finite shared output
link buffers

Host A

λin : original data

Host B

λoutλ'in: original data, plus
retransmitted data

‘

Causes/costs of congestion: scenario 2

Transport Layer 3-26

idealization: perfect
knowledge

� sender sends only when
router buffers available

finite shared output
link buffers

λin : original data
λoutλ'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

λ o
ut

λin

Causes/costs of congestion: scenario 2

Host B

A

14

Transport Layer 3-27

λin : original data
λoutλ'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

� sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

Transport Layer 3-28

λin : original data
λoutλ'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

� sender only resends if
packet known to be lost

R/2

R/2λin

λ o
ut

when sending at R/2,
some packets are
retransmissions but
asymptotic goodput
is still R/2 (why?)

A

Host B

15

Transport Layer 3-29

A

λin λoutλ'in
copy

free buffer space!

timeout

R/2

R/2λin

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

Host B

Realistic: duplicates
� packets can be lost, dropped

at router due to full buffers

� sender times out prematurely,
sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

Transport Layer 3-30

R/2

λ o
ut

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

“costs” of congestion:
� more work (retrans) for given “goodput”

� unneeded retransmissions: link carries multiple copies of pkt

� decreasing goodput

R/2λin

Causes/costs of congestion: scenario 2

Realistic: duplicates
� packets can be lost, dropped

at router due to full buffers

� sender times out prematurely,
sending two copies, both of
which are delivered

16

Transport Layer 3-31

another “cost” of congestion:

� when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

λ o
ut

λin
’

Transport Layer 3-32

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

� no explicit feedback
from network

� congestion inferred
from end-system
observed loss, delay

� approach taken by
TCP

network-assisted
congestion control:

� routers provide
feedback to end systems

� single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

�explicit rate for
sender to send at

17

Transport Layer 3-33

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
� segment structure

� reliable data transfer

� flow control

� connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-34

TCP congestion control: additive increase
multiplicative decrease

� approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

� additive increase: increase cwnd by 1 MSS every
RTT until loss detected

�multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

T
C

P
 s

en
de

r
co

ng
es

tio
n

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

18

Transport Layer 3-35

TCP Congestion Control: details

� sender limits transmission:

� cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

� roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 3-36

TCP Slow Start

� when connection begins,
increase rate
exponentially until first
loss event:
� initially cwnd = 1 MSS

� double cwnd every RTT

� done by incrementing
cwnd for every ACK
received

� summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

19

Transport Layer 3-37

TCP: detecting, reacting to loss

� loss indicated by timeout:
� cwnd set to 1 MSS;

�window then grows exponentially (as in slow start)
to threshold, then grows linearly

� loss indicated by 3 duplicate ACKs: TCP RENO

� dup ACKs indicate network capable of delivering
some segments

� cwnd is cut in half window then grows linearly

� TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Transport Layer 3-38

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
� variable ssthresh
� on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

20

Transport Layer 3-39

TCP throughput

� avg. TCP thruput as function of window size, RTT?
� ignore slow start, assume always data to send

� W: window size (measured in bytes) where loss occurs
� avg. window size (# in-flight bytes) is ¾ W

� avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 3-40

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

